Issue |
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
|
|
---|---|---|
Article Number | 00061 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202016800061 | |
Published online | 06 May 2020 |
Calculation of the maximum velocity of gravity flow in the pond-clarifier with higher aquatic plants
1
Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, 49005, Dnipro, Simferopolska Str., 2a, Ukraine
2
National Technical University “Dnipro Polytechnic”, 49000, Dnipro, Dmitry Yavornitskiy Ave., 19, Ukraine
* Corresponding author: evs_igtm@i.ua
The analysis of the possible maximum fluid flow rates when using higher aquatic plants for clarification of recycled water in the pondclarifier of the tailing pond has carried out. The study has been performed on the basis of a mathematical model of a plane slow stationary gravity flow of a viscous fluid in two parallel layers. The results of the study made it possible to determine the fluid velocity through a layer of higher aquatic plants floating on a free surface. The maximum possible velocity depending on the layer porosity has been determined. This value is necessary to determine the rational parameters of the process of clarifying technical recycled water from particles of the given hydraulic size, taking into account the pond-clarifier geometric dimensions. It is shown that the velocity in the layer with higher aquatic plants has been determined by the ratio of two parameters of this layer - porosity and dimensionless resistance coefficient. It has been shown that the maximum velocity value coefficient in the layer with plants floating on free surface depends only on porosity of this layer and does not depend on its resistance coefficient.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.