Issue |
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 5 | |
Section | Clean and Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202018101005 | |
Published online | 24 July 2020 |
Effect of co-digestion of food waste and cow dung on biogas yield
1 Department of Chemical, Materials and Metallurgical Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
2 Department of Chemical Engineering Technology, Faculty of Engineering and the Built Environment, University of Johannesburg, P O Box 17011, Johannesburg, South Africa
* Corresponding author: muzendae@biust.ac.bw
This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.