Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 5 | |
Section | Energy Saving and Environmental Protection Technology | |
DOI | https://doi.org/10.1051/e3sconf/202018502006 | |
Published online | 01 September 2020 |
Leukocyte recognition algorithm in leucorrhea microscopic images based on ResNet-34 neural network
1 School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
2 Wuhan Running Education Research Institute, Wuhan, Hubei Province, China
* Corresponding author: 614479456@qq.com
Automatic leucocyte recognition for leukorrhea microscopic images is a digital image processing technology in the field of machine learning. The existence and quantity of leukocytes in leucorrhea microscopic image is an important sign and basis to judge the inflammation of vagina or cervix. Therefore, the recognition and count of leucocyte is an effective means to evaluate the condition of the disease. To solve the problem of low efficiency of leucocyte recognition in traditional artificial microscopy, this paper proposes an automatic recognition algorithm based on ResNet-34 neural network. Firstly, Canny edge detection algorithm based on genetic algorithm is used to extract the foreground target in the leucorrhea microscopic image. Secondly, the leucocyte target is selected according to the connected region and boundary rectangle parameters of the foreground target. Finally, ResNet-34 neural network is applied for the classification of leukocytes. Experiments show that the recognition accuracy of leukocytes in leucorrhea microscopic image is 92.8%, and the recall is 97.1%, which is higher and better than other methods.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.