Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 04055 | |
Number of page(s) | 4 | |
Section | Chemical Engineering and Food Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202018504055 | |
Published online | 01 September 2020 |
ZIF-8 and polyaniline modified coconut gel to fabricate composite aerogel for efficient removal of tetracycline
1 School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
2 Department of Light Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
3 Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
* Corresponding author: zengfm@cust.edu.cn
To overcome the limitations of large-scale applications for MOFs in the powder form, herein, we proposed a strategy of in-situ growth ZIF-8 onto polyaniline (PANI) modified coconut hydrogel (CCH). Firstly, PANI played the role of metal chelated layers, which were coated on CCH by in-situ polymerization. Then, ZIF-8 nanocrystals were in-situ growth on the surface of the PANI coated CCH to synthesise the composite adsorbent ZIF-8/PANI/CCH. Finally, after vacuum freeze-dried, a white and well structured ZIF-8/PANI/CCA(ZIF-8/polyaniline/coconut aerogel) was obtained. The loading mass ratios of ZIF-8 on CCA and PANI/CCA were 11.3% and 37.5%, respectively, which indicates that PANI as interface layers can effectively promote the in-situ growth of ZIF-8. The obtained composite adsorbent (ZIF-8/PANI/CCA) was applied for the adsorption of tetracycline (TC),and the removal efficiency reaches over 91.6%. This strategy may provide an effective and versatile pathway to increase MOF loading mass on natural polysaccharide aerogel and sequentially branch out their applications in pollutant treatment fields.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.