Issue |
E3S Web Conf.
Volume 190, 2020
1st International Conference on Renewable Energy Research and Challenge (ICoRER 2019)
|
|
---|---|---|
Article Number | 00033 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202019000033 | |
Published online | 23 September 2020 |
Analysis of Voltage Unbalance and Energy Loss in Residential Low Voltage Distribution Systems with Rooftop Photovoltaic Systems
1
Green-Smart Energy Technology (G-SET) Research Group, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Thailand
2
Provincial Electricity Authority (PEA), Thailand
* Corresponding author: umarin@eng.src.ku.ac.th
This paper investigates effects of voltage unbalance and energy losses due to the connection of rooftop photovoltaic systems in a low voltage distribution system of a housing estate, which has light loads during daytime. The paper presents a case study of a real distribution power system of housing estate in Thailand. Voltage unbalance and energy losses were simulated by using system characteristic and load data from GIS database of PEA with the DIgSILENT Power Factory program. The key findings of our analysis are as follows. Firstly, the number of installable 1-phase rooftop PV systems varies directly with load density. Secondly, the number of installed 1-phase rooftop PV systems can be increased if the installation locations are closer to the transformer. For 3-phase rooftop PV systems, their installations do not have any effects on the voltage unbalance. Furthermore, system energy loss relates to the load density and PV system installation locations in the same way as the voltage unbalance. The key implication of our study is that the installation of 1-phase rooftop PV system should be granted based on a careful consideration of the installation location and the load density.
Key words: installation / load density / minimum distribution / system energy
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.