Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 05066 | |
Number of page(s) | 6 | |
Section | Environmental Engineering, Ecological Environment and Urban Construction | |
DOI | https://doi.org/10.1051/e3sconf/202019405066 | |
Published online | 15 October 2020 |
Resource utilization of composite insulator silicone rubber
1 State Grid Shandong Electric Power Research Institute, Jinan, 250003, China
2 State Grid Jinan Jiyang Power Supply Company, Jinan, 251400, China
* Corresponding author: jiangyuze@163.com
Composite insulators provide highly effective insulation support, and their application in power transmission lines has seen rapid growth in recent years. However, every year, a large quantity of composite insulators are scrapped on reaching the end of their service life. Due to the exceptional chemical inertness of the silicone rubber in the insulators, they have poor self-degradation characteristics, and end up filling landfills and occupying a lot of space, which inadvertently endangers the ecological environment. So far, there has not been any effective means to recycle composite insulators. This paper analyzes the material composition and characteristics of the silicone rubber in the core and housing of composite insulators, and proposes a resource utilization approach for the application of the pulverized silicone rubber powder from the insulators in the following three applications: use in producing silicone rubber asphalt at a blending ratio of 15%–18%—the corresponding market demand is large enough to meet the disposal needs of scrapped composite insulators; use in modification of waste rubber powder and blending with ethylene propylene diene monomer rubber (EPDM) at a blending ratio of 10%—as the annual production capacity of EPDM is more than 850,000 tons in China, thousands of tons of waste insulators can be thus disposed; and use as an aggregate for non-slip coatings, which accounts for more than 40% of the coatings material. Thus, there is tremendous scope for recycling waste insulator.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.