Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 02026 | |
Number of page(s) | 6 | |
Section | Teoretical and Numerical Models | |
DOI | https://doi.org/10.1051/e3sconf/202019502026 | |
Published online | 16 October 2020 |
A semi-empirical model to predict excess pore pressure generation in partially saturated sand
1 Graduate Student, University of New Hampshire, Dept. of Civil and Environmental Engineering, Durham, NH, USA
2 Associate Professor, University of New Hampshire, Dept. of Civil and Environmental Engineering, Durham, NH, USA
* Corresponding author: majid.ghayoomi@unh.edu
Past studies revealed that excess pore pressure generation due to cyclic loading is highly governed by induced strains, volumetric deformation potential of soil, number of cycles, and bulk stiffness of pore fluid. It is well established that partial saturation can significantly reduce bulk stiffness of pore fluid and consequently excess pore pressure generation during seismic loading. On the basis of that, a number of researchers have investigated induced partial saturation as an effective soil improvement technique to increase the liquefaction resistance of fully saturated soils. This paper focuses on development of a semi- empirical model to interpret the effects of partial saturation on the excess pore pressure generation in sands. In this regard, an existing strain based excess pore pressure ratio (ru) prediction model originally developed for fully saturated soils was modified to incorporate the effect of partial saturation on the excess pore pressure generation. The literature data as well as data from a series of strain-controlled direct simple shear test were used to evaluate the reliability of the proposed equation in predicting the excess pore pressure ratio in partial saturation condition.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.