Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 5 | |
Section | Special Session on Biocementation | |
DOI | https://doi.org/10.1051/e3sconf/202019505003 | |
Published online | 16 October 2020 |
Unsaturated Fluid Flow through Granular Soils Treated with Microbial Induced Desaturation and Precipitation
Department of Civil, Environmental and Sustainable Engineering, Arizona State University, Tempe, AZ 85287, USA
* Corresponding author: egstalli@asu.edu
The use of microorganisms to induce desaturation of granular soils via denitrification results in nitrogen and carbon dioxide gas generation, which in turn lowers the degree of saturation of the soil matrix. Given sufficient substrates, the stimulated bacteria will produce enough gas to develop a continuous gas phase. Introducing gas into the soil to reduce the degree of saturation is shown to increase the soil resistance to dynamic loading and helps to mitigate liquefaction. The impact of desaturation on liquefaction hazard mitigation has comparative value to the calcite precipitation phase of the process. Meso-scale tests have been performed on a relatively thin tank of soil to simulate planar flow through a granular soil treated with MIDP.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.