Issue |
E3S Web Conf.
Volume 196, 2020
XI International Conference “Solar-Terrestrial Relations and Physics of Earthquake Precursors”
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 9 | |
Section | Geophysical Fields and their Interactions | |
DOI | https://doi.org/10.1051/e3sconf/202019602004 | |
Published online | 16 October 2020 |
Analysis of energy characteristics of acoustic emission signals during uniaxial compression of geomaterial samples
1 Science Research Station of the RAS in Bishkek city, Kyrgyzstan
2 Institute of Marine Geology and Geophysics FEBRAS, Russia
* Corresponding author: koitash@mail.ru
Acoustic emission (AE) signals were obtained during deformation by uniaxial compression of specimens of various geomaterials. Experiments on uniaxial compression were carried out on a low-noise lever setup with water leakage, where the maximum load on the sample does not exceed 250 kN. The received signals were digitized by an 8-channel USB 3000 ADC unit with a width of 14 bits and a maximum sampling rate of 3 MHz. The energy distribution functions of AE signals are considered. The maximum amplitude of the AE waveform was selected as the energy characteristic of the AE signal. The flow of AE events is considered from the viewpoint of nonequilibrium thermodynamics using the Tsallis statistics. To describe the energy distribution function of the AE signals, we used a modified model of a stick-slip earthquake source -”discontinuous sliding” of two plates over each other along a fault in the presence of friction and the principle of maximum entropy. The model is used to quantify long-range correlations arising in the flow of earthquakes. It is shown that the AE signal flow is a system with memory and longrange correlations. The analysis of the behavior of the Tsallis parameter was carried out throughout the experiment.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.