Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 06022 | |
Number of page(s) | 10 | |
Section | Internal Combustion Engines | |
DOI | https://doi.org/10.1051/e3sconf/202019706022 | |
Published online | 22 October 2020 |
Theoretical and experimental control strategies assessment of a Sliding Vane Oil Pump
1
Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L’Aquila, Italy
2
O.M.P. Officine Mazzocco Pagnoni S.r.L., Via Marzabotto, 71/73, 40050 Argelato (BO), Italy
To date, Sliding Vane Pump (SVP) technology is one of the most attractive solution in different technical applications thanks to its reliability and compactness and capability to keep a high efficiency even when it is working far from rated condition. In particular, this feature makes the SVP suitable to be employed for the oil circulation (SVOP) in Internal Combustion Engine (ICE) which is characterized by a wide oil flow rates variation, delivered pressure and temperature variation which causes operating conditions of the pump far from the design point. Flow delivered changes in these machines are produced by varying the eccentricity for a mechanical connection with the engine - or by varying the speed of revolution. The mild hybridization of the powertrains calls for a strong development of electrically assisted engine auxiliaries which undoubtedly makes the flow variations easier to be done, but the presence of an electric motor requires some technological choices not fully assessed, a cost increase and a reliability decrease. The paper presents a mathematical model of a SVOP for oil circulation in ICE, suitably validated by a wide experimental activity. The model integrates a mono and zero-dimensional fluid-dynamic analysis and allows to represent the intimate behaviour of the machine. Moreover, it was employed as virtual platform to discuss pros and cons of different flow rate variation strategies and their effect on the efficiency of the SVOP.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.