Issue |
E3S Web Conf.
Volume 200, 2020
The 1st Geosciences and Environmental Sciences Symposium (ICST 2020)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 6 | |
Section | Environmental Management | |
DOI | https://doi.org/10.1051/e3sconf/202020002008 | |
Published online | 23 October 2020 |
Exposure and loss assessment of soil liquefaction in coastal area of Kulon Progo, Indonesia
Department of Development Geography, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
* Corresponding author: rizki.adriadi.g@ugm.ac.id
Soil Liquefaction is a phenomenon of loss of strength of the granural soil layers due to increased pore water stress caused by earthquake shocks. Soil liquefaction can cause material and life damage if occurs in the developed area. Kulon Progo Regency based on the Atlas of Liquefaction Susceptibility Zones in 2019, has high susceptibility zones, which has the potential for flow liquefaction, lateral spreading, vertical displacement, and sand boil. This study aims to assess the exposure and loss index in liquefaction hazard zone based on the characteristics of land use and social demographic. The exposure index is obtained from overlaying between susceptibility map and liquefaction exposure variables, when the loss assessment is done by simulating the losses in several earthquake moment magnitude scenarios. Study results show that high exposure surrounding the residential zone in the south of the Wates Urban Area and the construction location of the Yogyakarta International Airport. There are settlement areas potentially affected by lateral spreading in Glagah, Karangwuni, Banaran, and Karangsewu Villages. While the results of the loss assessment show that transport infrastructure and residential buildings are the most affected objects when liquefaction phenomena occur due to the earthquake. Managing the expansion of settlement area through zoning regulation and technical engineering approach is needed to reduce losses due to future liquefaction phenomenon.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.