Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 7 | |
Section | CO2 Sequestration and Deep Geothermal Energy | |
DOI | https://doi.org/10.1051/e3sconf/202020502003 | |
Published online | 18 November 2020 |
Pressure build-up analysis in the flow regimes of the CO2 sequestration problem
1 University of Nicosia, Department of Engineering, P.O.Box 24005, 1700, Nicosia Cyprus
2 Cyprus University of Technology, Department of Civil Engineering and Geomatics, P.O.Box 50329, 3603, Limassol-Cyprus
* Corresponding author: sarris.e@unic.ac.cy
In this work we analyse theoretically and numerically the pressure build-up on the cap rock of a saline aquifer during CO2 injection in all flow regimes. Flow regimes are specific regions of the parameter space representing the mathematical spread of the plume. The parameter space is defined in terms of the CO2-to-brine relative mobility λ and the buoyancy parameter Γ. In addition to the known asymptotic self-similar solutions for low buoyancy regimes, we introduce two novel ones for the high buoyancy regimes via power series solutions. Explicit results for the peak pressure value on the cap, which arises in the vicinity of the well, are derived and discussed for all flow regimes. The analytical results derived are then applied for cap integrity considerations in six test cases of CO2 geological storage from the PCOR partnership, most of which correspond to high buoyancy conditions. The validity of the self-similar solutions which are late time asymptotics, is verified with CFD numerical simulations with a commercial software. The comparison between the self-similar solutions and CFD for the pressure estimations are in excellent agreement and the self-similar solutions are valid for typical injection durations even for early times.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.