Issue |
E3S Web Conf.
Volume 206, 2020
2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020)
|
|
---|---|---|
Article Number | 03023 | |
Number of page(s) | 4 | |
Section | Geohydrology And Ocean Resources Exploration And Survey | |
DOI | https://doi.org/10.1051/e3sconf/202020603023 | |
Published online | 11 November 2020 |
Surface Fitting for non-Grid Data from in-Situ Measuring Systems of Aero-engine Blade
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
* Corresponding author: mao_qing @tju.edu.cn
High machining accuracy of aero-engine blade largely determines the carrying capacity, endurance, acceleration and the dynamic performance of the aero-engine, so a reliable machining error inspection and evaluation technique is imperative. In order to give a reliable error evaluation, the non- uniform rational B-spline (NURBS) technique is adopted to reconstruct the surface within a specified accuracy. Usually, data points measured from aero-engine blade are non-grid data in situ measuring systems. To overcome the difficulty of NURBS surface fitting from non-grid data, a new method based on data conversion is proposed, in which chord length parameterization and uniform parameter sampling are combined together to realize the data convertation, and subsequently hierarchical fitting strategy is applied to finish the NURBS surface reconstruction. The way proposed for data conversion is easy to realize, and by which gemetrical features of original measured data are also reserved well, which make the whole method outstanding in low time cost. Experimental results show that the method is fast, effective. The source code has been implemented in VC++, while the resulting pictures are constructed in Matlab with the obtained control points, knot vectors, and the orders.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.