Issue |
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 7 | |
Section | General Environmental Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202021102004 | |
Published online | 25 November 2020 |
A comparison of regularized, sharp boundary and tear zone inversions along an MT profile in Sabalan geothermal field, Iran
Institute of Geophysics, University of Tehran, Tehran, P.O. Box: 14155-6466, Tehran/Iran.
* Corresponding author: mmontaha@ut.ac.ir
This paper investigates magnetotelluric (MT) data recorded along a profile in the Sabalan geothermal region, NW of Iran. To find the range of relevant models consistent with the data, this study employed the so-called regularized, tear zone, and sharp boundary inversions. This study could effectively derive three alternative classes of models. Although the models show stable common resistive and conductive features there are some inconsistent details. Unaltered surface rocks and porous Basalt exhibit a high resistive overburden underlain by relatively more conductive Paleozoic sediments. A common signature of hydrothermal systems appears, and resistivities increase beneath a highly conductive clay cap in deeper parts. An intriguing feature resolved in the smoothest inversion model is a second deep conductor of 30 Ωm resistivities at a depth of 3 km, extending close to the surface. It can be related to the hot, solidified volcanic intrusions, resemblingthe heat source in a geothermal system. This study applied the two other inversion approaches for further hypothesis tests. Although the tear zone inversion re-establish the deep conductor (with 38 Ωm resistivities at 3 km depth), it is absent in the sharp boundary inversion result. This study concludes that the second deep conductor has a limited structure resolution.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.