Issue |
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 7 | |
Section | Industrial Catalysis and Chemical Substance R&D and Application | |
DOI | https://doi.org/10.1051/e3sconf/202021301013 | |
Published online | 01 December 2020 |
Reactions related with hydroxyl, carboxyl and alkyl side chain at different temperature stages and the effects on low-rank coal ignition
1
MOE Key Laboratory of Resources and Environmental System Optimization, School of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
2
New Energy Research Center, National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
3
Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Shanxi, 030024, China
Low-rank coal contains abundant hydroxyl, carboxyl and alkyl side chains, and reactions related to these groups are the main reason for the spontaneous combustion of low-rank coal. Here, two different low-rank coals (BRXL, YJL52) are selected. Firstly, the ignition temperatures of the coals are determined by thermogravimetric method. Secondly, the coals are heated at 100°C temperature intervals before the ignition temperature in the thermogravimetry, and infrared measurement is performed to explore the changes of these groups. Combining previous studies in the literatures with infrared analysis, it is found that reactions related are as follows: phenolic hydroxyl converting into alcoholic hydroxyl, alcoholic hydroxyl further oxidizing to carboxyl, and carboxyl decarboxylating into alkyl side chains. After that, the changes of phenolic hydroxyl and carboxyl on the surface of the coal at 100°C temperature intervals are determined by titration, which further reveal the main reactions occurred in every temperature interval. Additionally, the actual heat release in different temperature ranges is discussed with the reaction enthalpies of the above-mentioned main reactions. As a result, the key temperature stage that causes spontaneous combustion is found. The screening study in this paper on the reaction of low-rank coal before spontaneous combustion provides a theoretical basis for the control of spontaneous combustion of low-rank coal.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.