Issue |
E3S Web Conf.
Volume 216, 2020
Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202021601031 | |
Published online | 14 December 2020 |
Application of high optical technologies to determine the temperature field, ingredient composition and microstructure of the dispersed phase of combustion products of energy fuels
Kazan State Energy University, 420066 Kazan Krasnoselskaya 51, Russia
* Corresponding author: dr.akhmetshin@ieee.org
Application of high optical technologies for determining the temperature field, ingredient composition and microstructure of the dispersed phase of combustion products of power fuels is considered. The temperature of the combustion products is determined by method of the self-reversal of spectral lines. To determine the ingredient composition, the methods of fine-structure spectroscopy are used, when the absorption spectra of flame radiation are measured with a high spectral resolution. Then the ingredients are identified by the position of the spectral lines, and their concentration – by the intensity of the spectral lines at a fixed temperature. The temperature field in the combustion chambers of power plants is reconstructed by the method of numerical simulation of radiation transfer in combustion products of an inhomogeneous radiation propagation medium. The obtained experimental data on optical characteristics are used to solve problems of radiation heat transfer in combustion chambers of power plants with multi-chamber furnaces. Prospects for the creation of high-temperature atlases of the parameters of spectral lines of the ingredients of the gas phase of combustion products and their application in promising developments of power plants and in rocket technology are considered.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.