Issue |
E3S Web Conf.
Volume 216, 2020
Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020)
|
|
---|---|---|
Article Number | 01113 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202021601113 | |
Published online | 14 December 2020 |
Research of Ferr-Resonance Oscillations at the Frequency of Subharmonics in Three-Phase Non-Linear Electric Circuits and Systems
1 Tashkent state technical university, University street №2, Tashkent, 100095, Uzbekistan
2 Navoi State Mining Institute, Uzbekistan
* Corresponding author: giyos2007@rambler.ru
It is known that the occurrence and existence of ferroresonant oscillations at the subharmonic frequency (SHC) in power transmission lines (TL) and in power supply systems is extremely undesirable, since they cause ferroresonant overvoltages at different frequencies. At the same time, there is a wide class of nonlinear electrical circuits, in which the excitation of autoparametric oscillations (AIC) at the frequency of the SHC forms the basis of frequency converting devices serving as secondary power sources. It is shown that three-phase nonlinear systems are in one way or another equivalent circuits for power transmission lines, the main elements of which are: longitudinal compensation capacitors, transverse compensation reactors, and transformers with a nonlinear characteristic. To study the regularities of the excitation and maintenance of SHC at a frequency in three-phase electro-ferromagnetic circuits (EFMC), theoretical and experimental studies of an equivalent model of a three-phase circuit with nonlinear inductance were carried out. For the analysis of the steady-state mode of the SHC at the frequency, the method of a small parameter (averaging) was applied. A shortened differential equation of motion for a three-phase nonlinear circuit is obtained. By solving them, the regions of existence of the SHC and the critical parameters of the chain were determined. The obtained results of theoretical research are confirmed by experimental studies.
Key words: ferroresonance / self-oscillation / subharmonic / approximation / lowest harmonic / small parameters / ferromagnetic element
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.