Issue |
E3S Web Conf.
Volume 220, 2020
Sustainable Energy Systems: Innovative Perspectives (SES-2020)
|
|
---|---|---|
Article Number | 01075 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202022001075 | |
Published online | 16 December 2020 |
Modeling and analysis of vector control systems for asynchronous motor
1
Electric Drive Department, Lipetsk State Technical University, Lipetsk, Russia
2
Kazan State Power Engineering University, str. Krasnoselskaya, 51, 420066, Kazan, Russia
* Corresponding author: mesherek@yandex.ru
At metallurgical enterprises, slab transfer devices are widely used, the principle of operation of which is to lift slabs in the steel casting area and transport them to the storage area. The article considers the existing control system of the slab transfer device. At the moment, the mechanism has a DC motor controlled by a thyristor Converter. This system is difficult to maintain and has a large size. As an upgrade, the installation of an asynchronous motor with a frequency Converter is proposed. In the Matlab environment, mathematical models of single-circuit and double-circuit DC motor control systems and a model of asynchronous motor with a short-circuited rotor have been developed. A vector control system is used as an AC motor control system. As a result of simulation performed analysis of the characteristics. As an optimization of the system with vector control, in order to reduce dynamic loads on the turntable, it is proposed to introduce an intensity setter into the system, the use of which provides the necessary restriction of accelerations and jerks, reduces shock loads on the mechanical components of the electric drive, including a reduction in the load on the turntable when lowering the slab.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.