Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 9 | |
Section | Mathematical Models for Environmental Monitoring and Assessment | |
DOI | https://doi.org/10.1051/e3sconf/202022401003 | |
Published online | 23 December 2020 |
Applying Newton’s second order optimization method to define transition keys between planar coordinate systems
Saint Petersburg Mining University, 2, Line 21, Vasilievsky Ostrov, 199106, Saint Petersburg, Russian Federation
* Corresponding author: bykasov.1996@mail.ru
The article considers the theoretical component of Newton’s second-order method, its main advantages and disadvantages when used in geodesy. The algorithm for determining the minimum of target functions by the Newton method of the second order was studied and analyzed in detail. Parameters of connection between flat rectangular coordinate systems are calculated. The task of determining the transition keys is relevant for geodesy. Comparative analysis of Newton’s method with the method of conjugated gradients was carried out. The algorithm for solving this problem was implemented in the Visual Basic for Applications software environment. The obtained data allow us to conclude that the Newton method can be used more widely in geodesy, especially in solving nonlinear optimization problems. However, the successful implementation of the method in geodetic production is possible only if the computational process is automated, by writing software modules in various programming languages to solve a specific problem.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.