Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 5 | |
Section | Mathematical Models for Environmental Monitoring and Assessment | |
DOI | https://doi.org/10.1051/e3sconf/202022401008 | |
Published online | 23 December 2020 |
On the issue of using intuitionistic fuzzy sets for describing the expediency of solving optimization problems by genetic algorithms with given parameters
1
Kinoplan LLC, 107/1 Nansena st., Rostov-on-Don, 344038, Russia
2
Don State Technical University, 1 Gagarina sq., Rostov-on-Don, 344003, Russia
* Corresponding author: vencov@list.ru
The paper analyses a possible option for preparing data on the results of the genetic algorithm for transfer to another subject area. It was shown that the complexity of modern target functions requires the development of new approaches to determining the parameters of search procedures. A set of experiments, each stage of which consisted of performing 100 runs of the genetic algorithm on a CPU or GPU architecture, which determines the optimal solution of the Ackley’s function within a given time interval, was carried out. After the specified time interval expired, the operation of the algorithm was correctly completed by fixing the results obtained at the final iteration. The values of the absolute error were set to Δ={0.5, 0.15, 0.1, 0.05}. For each error value the number of algorithm runs, as a result of which the deviation was greater than Δ, was determined. On the basis of the experiment carried out, fuzzy estimates of the inexpediency of searching for the optimum of the Ackley’s function by the genetic algorithm on the CPU architecture in a time from 100 ms ...1800 ms were determined. The possibility of using intuitionistic fuzzy sets for describing the expediency of solving optimization problems by genetic algorithms with given parameters was shown.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.