Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 01026 | |
Number of page(s) | 7 | |
Section | Mathematical Models for Environmental Monitoring and Assessment | |
DOI | https://doi.org/10.1051/e3sconf/202022401026 | |
Published online | 23 December 2020 |
Training a digital model of a deep spiking neural network using backpropagation
Sevastopol State University, Sevastopol, 299053, Russia
* Corresponding author: bondarev@sevsu.ru
Deep spiking neural networks are one of the promising eventbased sensor signal processing concepts. However, the practical application of such networks is difficult with standard deep neural network training packages. In this paper, we propose a vector-matrix description of a spike neural network that allows us to adapt the traditional backpropagation algorithm for signals represented as spike time sequences. We represent spike sequences as binary vectors. This enables us to derive expressions for the forward propagation of spikes and the corresponding spike training algorithm based on the back propagation of the loss function sensitivities. The capabilities of the proposed vector-matrix model are demonstrated on the problem of handwritten digit recognition on the MNIST data set. The classification accuracy on test data for spiking neural network with 3 hidden layers is equal to 98.14%.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.