Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 02031 | |
Number of page(s) | 6 | |
Section | Information Technologies for Environmental Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202022402031 | |
Published online | 23 December 2020 |
Modelling the generation of dusty marine aerosol by expeditionary data and remote sensing methods over the Black Sea region
1
Marine Hydrophysical Institute of RAS, Sevastopol, 299011, Russia
2
Sevastopol State University, Sevastopol, 299053, Russia
* Corresponding author: hanna.papkova@gmail.com
During a long-range transport, Sahara dust is naturally mixed with other aerosols, including maritime. At present, the mixing of these types of marine and dust aerosols is of particular interest, since it is important to correctly estimate the ionic and mass balance of aerosol particles. This problem is caused by the need for a reliable determination of the aerosol source and for correct atmospheric correction of satellite data. An analysis was made of the correlation between the change in the AOT parameter and the dates of dust transport from the Sahara to the Black Sea region. The analysis results confirmed the fact that the presence of dust aerosol over the Black Sea water area has a strong effect on the AOT indicator at all wavelengths, increasing the parameter almost by 2 times. This fact is correspondent to the generation of a secondary type of aerosol, namely, dusty marine aerosol. Analysis of CALIPSO aerosol subtype maps also revealed the presence of dusty marine aerosol with corresponding depolarization coefficients.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.