Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 04020 | |
Number of page(s) | 21 | |
Section | Agriculture and Bioscience | |
DOI | https://doi.org/10.1051/e3sconf/202022404020 | |
Published online | 23 December 2020 |
Development of rice pre-breeding resources with blast resistance
1
Federal Scientific Rice Centre, 3, Belozerny, 350921, Krasnodar, Russia
2
North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, 40 years of Victory street, 39, 350901, Krasnodar, Russia
3
Liaoning Rice Research Institute, Shenyang, China
* Corresponding author: agroplazma@gmail.com
Within the framework of this study, the first Russian-Chinese joint program for development of rice varieties with long-term blast resistance was launched on the basis of rice germplasm exchange and the subsequent comprehensive study of the obtained breeding samples, hybridization of Russian and Chinese varieties with specified traits. The genetic diversity of the Chinese rice samples obtained by exchange was studied by biological and morphological traits of plants, taxonomic belonging to a botanical variety, elements of the yield structure, and resistance to lodging. 31 hybrid combinations (F1) from the crossing of Russian and Chinese varieties were used to obtain the BC1 generation. The technologies of cultivation of isolated rice anthers in vitro have been optimized in relation to Chinese genotypes in order to accelerate the genetic stabilization of breeding material obtained from crossing. Phenotyping of Russian and Chinese breeding samples was carried out on the basis of resistance to the local population of the blast pathogen (Magnaporthe grisea (T.T. Hebert) M.E. Barr)), on natural and artificial infectious backgrounds. DNA identification of genes for blast resistance was carried out for the same breeding samples. Based on the experimental data obtained, promising samples were selected - prototypes of new rice varieties.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.