Issue |
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202123001010 | |
Published online | 18 January 2021 |
Investigation of the efficiency of gas condensate reservoirs waterflooding at different stages of development
1 Ivano-Frankivsk National Technical University of Oil and Gas, Department of Petroleum Production, 15 Karpatska St, 76019, Ivano-Frankivsk, Ukraine
2 Joint-Stock Company “Ukrgazvydobuvannya”, Branch “Ukrainian Research Institute of Natural Gases”, 20 Gymnasium Embankment, 61010, Kharkiv, Ukraine
The study of flooding gas condensate reservoirs at different stages of depletion (25, 50, 75% of the dew point pressure and at the maximum condensation pressure) with different potential hydrocarbon content of 100, 300 and 500 g/m3 and different voidage replacement by using injection (50, 100 and 150%). The results showed a positive effect of water injection on the increase of the condensate recovery factor, but a decrease in gas production compared to the basic options of development at depletion drive. Thus, for formation systems with medium and high potential yield of liquid hydrocarbons C5+, the largest incremental production is obtained in the case when water injection begins with minimum depletion of formation energy. While for a formation system with a low potential yield (100 g/m3) the maximum technological effect is obtained under the condition of maximum depletion. In the case of medium and high C5+ yield in the formation gas, with a slight decrease in the formation pressure by 25 or 50% of the dew point pressure, the maximum increase in the condensate recovery factor is achieved at high injection rates with 100 or 150% voidage replacement. The obtained results can be used for rapid screening of potential methods of impact on the gas condensate reservoir, and the final decision concerning the technological parameters of production and injection wells operation will be made due to the results of optimization of multivariate hydrodynamic calculations using geological and technological models.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.