Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 6 | |
Section | NESEE2020-New Energy Science and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123301019 | |
Published online | 27 January 2021 |
Decentralized control of robot joints based on neural network observer
1 University of Science and Technology Beijing, USTB, BeiJing, 100000, China
2 University of Science and Technology Beijing, USTB, BeiJing, 100000, China
* Corresponding author: ydpan@ustb.edu.cn
In actual work, the system parameters of the robot joints will change in real time or cannot be measured, and the coupling relationship between the various subsystems and the existence of modeling errors make the system model difficult to determine. Based on such problems, a neural network observation is proposed Decentralized control method for robot joints of the robot. In the actual control of the manipulator, firstly, the model of each joint subsystem is established by the decentralized control theory, and the nonlinear function approximation ability of the neural network is used to approach the uncertain part of the manipulator subsystem online through input and output data. The design observer can estimate the state of the system, and use the estimated state to design a sliding mode controller to dynamically estimate and compensate the unknown model dynamics of each independent joint, and realize the self-control of the system when the speed information and model information are unknown. Adaptive control greatly enhances the robustness and adaptability of the robotic arm system. Finally, the stability criterion of the neural network observer and the sliding mode controller is given by the Lyapunov function method, and the simulation results prove the effectiveness of the design method.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.