Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 4 | |
Section | BFS2020-Biotechnology and Food Science | |
DOI | https://doi.org/10.1051/e3sconf/202123302021 | |
Published online | 27 January 2021 |
Rapid qualitative and quantitative detection of formaldehyde in squids based on colorimetric sensor array
1 Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China
2 School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
* Corresponding author: guanbinbinde@126.com
The colorimetric sensor array was used to detect the volatile organic compounds (VOCs) in squids with different formaldehyde content. In order to distinguish whether the formaldehyde is artificially added in the squids, the linear discriminant analysis (LDA) and K-nearest neighbor (KNN) based on principal component analysis (PCA) were used to make qualitative judgments, the result shows that the recognition rates of the training set and prediction set of the LDA model were 95% and 85% respectively, and the recognition rates of the training set and prediction set of the KNN model were both 90%. Moreover, error back propagation artificial neural network (BP-ANN) was used to quantitatively predict the concentration of formaldehyde in squids. The result indicates that the BP-ANN model acquired a good recognition rate with the correlation coefficient (Rp) for prediction was 0.9887 when the PCs was 10. To verify accuracy and applicability of the model, paired sample t-test was used to verify the difference between the predicted value of formaldehyde in the BP-ANN model and the actual addition amount. Therefore, this approach showed well potentiality to provide a fast, accuracy, no need for a pretreatment, and low-cost technique for detecting the formaldehyde in squids.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.