Issue |
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
|
|
---|---|---|
Article Number | 00059 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202123400059 | |
Published online | 02 February 2021 |
A comparative study of the kinetics and isotherm of adsorption of a cationic dye by different natural wastes
1 Moulay Ismail University, Faculty of Science and Technique, Department of Chemistry, Laboratory of Chemistry, Environment and Materials Analysis team, Errachidia, Morocco
* Corresponding author: kerrou.meryem@gmail.com
In many countries, water pollution from industrial wastewater is a serious problem. This type of pollution can have a harmful impact on the environment, to reduce the effects of these pollutants, several physico-chemical methods are implemented, in particular adsorption on bioadsorbents, it is a common process to remove traces of pollutants from water, the aim of our work is to realize a comparative experimental study of isotherms and adsorption kinetics of methylene blue (MB) on three substrates: sugar cane bagasse (SCB), almond shell (AS) and walnut shell (WS). The results of equilibrium kinetics show that walnut shell (WS) binds better to methylene blue than other substrates. The results also show that the adsorption kinetics are described by the expression of the pseudo-second order model. The isotherms of adsorption of methylene blue (MB) by sugarcane bagasse (SCB), walnut shell (WS) and almond shell are perfectly described by Langmuir's model and that walnut shell adsorbs methylene blue better than other substrates.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.