Issue |
E3S Web Conf.
Volume 236, 2021
3rd International Conference on Energy Resources and Sustainable Development (ICERSD 2020)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 7 | |
Section | Development, Utilization and Protection of Traditional Energy Resources | |
DOI | https://doi.org/10.1051/e3sconf/202123601027 | |
Published online | 09 February 2021 |
The flow and heat performance of tree-like network heat sink with diverging–converging channel
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
* Corresponding author. Tel.: +86 0551 63603127.mhliu@ustc.edu.cn (Minghou Liu).
A tree-like network heat sink with diverging–converging channel is designed, and effect of flow rate, channel diverging-converging angles on the flow and heat dissipation performance of the tree-like network heat sink is analysed and compared by numerical simulation. Results show that the diverging– converging angle of 2° can reduce the pressure drop by 14% when inlet mass flow rate is 0.00499kg/s. And the maximum temperature, the temperature difference between the maximum and minimum of the heat sink increases by 0.63K and 0.92K respectively. As the diverging-converging angle increases to 4°, however, it only reduces the pressure drop by 13% and can not bring more pressure drop due to formation of flow recirculation inside the tree-like network heat sink channel. Therefore, the diverging–converging fractal micro-channel heat sink with 2° has good heat dissipation performance with obvious lower pumping power.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.