Issue |
E3S Web Conf.
Volume 237, 2021
3rd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2020)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 4 | |
Section | Architecture Science and Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123703026 | |
Published online | 09 February 2021 |
Study on Design of Concrete Box Girder of A Railway Swivel Cable-Stayed Bridge
1
School of Architecture and Planning, Yunnan University, Kunming 650091, China
2
Yunnan Dazhu Technology Co., Ltd, Kunming 650030, China
3
Yunnan Kunchu expressway investment and Development Co., Ltd, Kunming 650030, China
A swivel cable-stayed bridge over the existing railway is a span across the existing railway. The recommended scheme for the main bridge is (128 + 388 + 128) m steel mixed composite beam swivel diagonal pull bridge with span. The cables of the diagonal pull bridge are arranged according to the fanshaped central double cable plane, taking into account the mechanical performance and aesthetics. The bridge structure adopts semi floating system. The concrete swivel diagonal pull bridge is adopted in the comparison scheme. The design of the bridge is three spans and (138 + 268 + 138) m prestressed concrete box girder is adopted. The cables are arranged according to the central double cable plane, and the bridge composition adopts the consolidation system. Considering the needs of bridge operation and maintenance in the later stage of the bridge, when the dead weight of concrete diagonal pull bridge is within the ideal range, the concrete swivel diagonal pull bridge can be preferred. In order to calculate the dead weight of the selected bridge, the author uses the finite element software to model the whole bridge and calculate the weight of the bridge. The results show that the dead weight of the concrete swivel diagonal pull bridge is too large, which has exceeded the maximum bearing capacity of the existing spherical hinge. In order to continue to use the concrete swivel diagonal pull bridge scheme, it is necessary to optimize the design of the concrete swivel diagonal pull bridge scheme.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.