Issue |
E3S Web Conf.
Volume 242, 2021
The 7th International Conference on Renewable Energy Technologies (ICRET 2021)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 5 | |
Section | Energy Engineering and Applications | |
DOI | https://doi.org/10.1051/e3sconf/202124202001 | |
Published online | 10 March 2021 |
Modeling, prediction and multi-objective optimization of the coal gasification system
Key Laboratory for Thermal Science and Power Engineering of MOE, Beijing Key Laboratory for CO 2 Utilization and Reduction Technology, Tsinghua University, Beijing, 100084, PR China
* Corresponding author: zhenyang@tsinghua.edu.cn
As global energy demand continues to increase, coal as basic energy still accounts for a significant proportion. Under the pressure of environmental protection, clean and efficient coal utilization technologies are in great demand. Coal gasification technology has the potential to realize near-zero-emissions for coal utilization. This paper establishes the coal gasification system model and analyzes the effect of oxygen/coal ratio and water/coal ratio on the system performance index of cold syngas efficiency, effective component ratio, carbon conversion ratio, and production ratio of hydrogen. The results show that when the oxygen/coal ratio increases, the efficiency of cold syngas and effective components ratio increase first and then decrease, carbon conversion ratio first increases and then remains unchanged, hydrogen production ratio gradually decreases; When the steam/coal ratio increases, the cold syngas efficiency, and carbon conversion ratio first increase and then decrease, effective component ratio ingredients gradually decreases, and the hydrogen production ratio increases. Using BP neural network to realize the prediction of the gasification system, and the mean square error reaches the magnitude of 10e-7. Multi-objective optimization results show that the oxygen/coal ratio and steam/coal ratio corresponding to the highest production ratio of hydrogen is 0.52 and 0.05. The highest carbon conversion ratio corresponds to the oxygen/coal ratio of 0.95 and the steam/coal ratio of 0.05.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.