Issue |
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
|
|
---|---|---|
Article Number | 03019 | |
Number of page(s) | 5 | |
Section | Chemical Performance Research and Chemical Industry Technology Research and Development | |
DOI | https://doi.org/10.1051/e3sconf/202124503019 | |
Published online | 24 March 2021 |
Vertically oriented MoS2 nanosheets with vast exposed edges for enhanced electrocatalytic hydrogen evolution
1 Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, China
2 Shenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen, 518055, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
* Corresponding author: jyu@hit.edu.cn
Molybdenum disulfide (MoS2), a typical two-dimensional transition metal dichalcogenides, is a promising candidate for electrochemical water splitting catalysis due to its ultrahigh special area and highly exposed active edge sites. The main challenges restricted the wider application for MoS2-based nanomaterials are the complex preparation process and the high overpotential. Here, we design a novel and facile sealed vessel to synthesize vertical oriented MoS2 nanosheets electrocatalyst with vast exposed edges. Benefiting from the unique vertically-oriented structural and compositional characteristics, the MoS2 nanosheets with 10-20 layers exhibits superior hydrogen evolution reaction (HER) performance with a small overpotential of 135.2 mV at a current density of 10 mA∙cm-2 and low Tafel slope of 82.5 mV∙dec-1 as well as extraordinary catalytic stability over 5000 cycles. Importantly, the sealed vessel reactor system may open up a versatile and potential synthetic way to construct various morphologies and structure of metal dichalcogenides for high-performance energy storage and conversions devices.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.