Issue |
E3S Web Conf.
Volume 248, 2021
2021 3rd International Conference on Civil Architecture and Energy Science (CAES 2021)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 8 | |
Section | Chemical Performance Structure Research and Environmental Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202124801022 | |
Published online | 12 April 2021 |
Effect of non-isothermal flow on chloride ion transport in saturated concrete
1 College of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang, China
2 School of Materials Science and Engineering, Southeast University, Nanjing, China
* Corresponding author: 2973321850@qq.com
The presence of a temperature difference changes the mode of motion of the fluid. The macroscopic motion of the fluid causes the relative displacement between the various parts of the fluid, which in turn affects the transfer of temperature in the medium. To investigate the effect of temperature transfer coupled fluid motion on chloride ion transport in concrete, a mesoscopic model of chloride ion transport in non-isothermal flow of concrete was established and compared with experimental data. Based on the finite element software, the influence of temperature transfer on the internal fluid motion and chloride ion transport of concrete was analyzed. And the effect of convective motion of fluid on the temperature transfer in concrete was studied. It is found that when the heating time is the same, the dynamic viscosity of the fluid in the concrete decreases with the increase of temperature; the chloride ion concentration increases with the increase of temperature at the same depth of concrete; when considering the influence of laminar flow, the temperature is transmitted faster in the concrete and exhibits uneven diffusion from high temperature to low temperature; non-isothermal flow promotes the diffusion of chloride ions in concrete, and the higher the temperature.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.