Issue |
E3S Web Conf.
Volume 248, 2021
2021 3rd International Conference on Civil Architecture and Energy Science (CAES 2021)
|
|
---|---|---|
Article Number | 02018 | |
Number of page(s) | 6 | |
Section | Energy Technology Application and Energy Saving and Emission Reduction Research and Development | |
DOI | https://doi.org/10.1051/e3sconf/202124802018 | |
Published online | 12 April 2021 |
Fluid structure interaction based structure stress and modal analysis of a flat type solar panel supporting system
Jiangxi Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, 330013, Nanchang, China
Solar panel supporting systems are often affected by strong wind loads, especially in typhoon-intensive areas such as Southeast Asia. This paper focuses on the study of flat-panel solar energy system. The numerical model of solar panel supporting system has been built by using the fluid flow control equations. Firstly, the numerical simulation of aerodynamic characteristics of the solar panel supporting system are conducted, and then the pressure results gained from CFD are loaded and coupled to the front and back of the solar panels. Lastly, the stress, strain and the modal analysis results of the support system under four different directional wind loads are achieved. The conclusions include: (1) under the condition of same wind speed, the wind pressure and distribution of the solar panel are different with different wind directions, and the wind load perpendicular to the solar panel has the greatest influence on the solar supporting system. (2)The modal frequency of flat panel solar supporting system is little affected by wind directions and average wind pressure. In the structure design, low order vibration should be considered mainly in the supporting part of the system, while the high order vibration should be generally considered in vibrating risk of solar panel. (3)The first six modal frequencies coupled with fluid-structure interaction of the flat panel solar supporting system are all slightly lower than the free modal frequencies.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.