Issue |
E3S Web Conf.
Volume 248, 2021
2021 3rd International Conference on Civil Architecture and Energy Science (CAES 2021)
|
|
---|---|---|
Article Number | 03078 | |
Number of page(s) | 4 | |
Section | Research on Civil Water Conservancy Engineering and Urban Architecture | |
DOI | https://doi.org/10.1051/e3sconf/202124803078 | |
Published online | 12 April 2021 |
Velocity and turbulence affected by various vegetations in open channel
1 Ocean College, Zhejiang University, Hangzhou 310058, China
2 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Netherland
* Corresponding author: 21934107@zju.edu.cn
Water energy is a conventional source of source that is widely available in nature. It can be easily converted into high quality secondary energy-electric energy through hydroelectric power stations. Hydropower is not only a widely used conventional energy source, but also a renewable energy source. Moreover, hydroelectric power has no pollution to the environment. Therefore, water energy is an inexhaustible and high-quality energy source among many energy sources in the world. However, vegetation can change flow structure and turbulence characteristics, impacting the use of water energy. In previous researches, few studies have focused on the comparison of velocity and turbulence influenced by various vegetations. Therefore, laboratory experiments were carried out to investigate hydrodynamics affected by submerged rigid vegetation (reed and wooden stick) and merged flexible vegetation (grass and chlorella) under different conditions. The time-averaged velocity distributions of planted floodplain are not logarithmic. Instead, reed and wooden stick followed an “S-shape” profile, but for grass and chlorella, they presented reverse S-shape profile. For all cases, turbulence is not isotropic and the change law of turbulence intensity is different in different sections.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.