Issue |
E3S Web Conf.
Volume 256, 2021
2021 International Conference on Power System and Energy Internet (PoSEI2021)
|
|
---|---|---|
Article Number | 02032 | |
Number of page(s) | 6 | |
Section | Energy Internet R&D and Smart Energy Application | |
DOI | https://doi.org/10.1051/e3sconf/202125602032 | |
Published online | 10 May 2021 |
Multi-energy load forecasting model based on bi-directional gated recurrent unit multi-task neural network
1 Economic & Technology Research Institute of State Grid Shandong Electric Power Company, Shandong 250021, China.
2 Tianjin Xianghe Electric Co. Ltd., Tianjin 300000, China.
* Corresponding author’s e-mail: liu_rui@zju.edu.cn
The complex coupling, coordination and complementarity of different energy in the integrated energy system puts forward higher requirements for the technology of multi-energy load forecasting. To this end, this paper proposes a novel multi-energy load forecasting model based on bi-directional gated recurrent unit (BiGRU) multi-task neural network. Firstly, through the correlation analysis, an effective multi-energy load input data set is constructed. Secondly, the input data set is utilized to train the BiGRU and master the evolution laws of multi-energy loads. Then, multi-task learning (MTL) is used to share the information learned by BiGRU from perspectives of different load forecasting tasks, so as to fully dig the coupling relations among various energy loads. Finally, different types of load forecasting results can be obtained. Simulation results show that BiGRU can simultaneously consider the known data of the past and the future, and it can learn more characteristic information effectively. At the same time, the proposed model utilizes MTL to carry out parallel learning and information sharing for forecasting tasks of various energy loads, which can dig the complex coupling relations among different types of loads more deeply, thus improving the forecasting accuracy of multi-energy loads.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.