Issue |
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 5 | |
Section | Energy Chemistry and Energy Storage and Save Technology | |
DOI | https://doi.org/10.1051/e3sconf/202125701017 | |
Published online | 12 May 2021 |
Research on electric vehicle load forecasting based on travel data
College of Energy and Electrical Engineering, Hohai University, Nanjing 211199, China
* Corresponding author: a15850686503@163.com
Due to the rapid promotion of electric vehicles, large-scale charging behavior of electric vehicles brings a large number of time and space highly random charging load, which will have a great impact on the safe operation of distribution network. This paper proposes a planning method of electric vehicle charging station based on travel data. Firstly, the didi trip data is processed and mined to get the trip matrix and other information. Then, the electric vehicle charging load forecasting model is established based on the established unit mileage power consumption model and charging model, and the charging demand distribution information is predicted by Monte Carlo method. Finally, the simulation analysis is carried out based on the trip data of some areas of a city, which shows the effectiveness of the established model feasibility.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.