Issue |
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
|
|
---|---|---|
Article Number | 02055 | |
Number of page(s) | 5 | |
Section | Research on Energy Consumption and Energy Industry Benefit | |
DOI | https://doi.org/10.1051/e3sconf/202125702055 | |
Published online | 12 May 2021 |
Research on NDT-based Positioning for Autonomous Driving
1
College of Automation, Wuhan University of Technology, 430070, Wuhan, Hubei, China
2
Shenzhen Road Rover Technology Co., Ltd, 518000, Shenzhen, China
Autonomous driving technology is one of the currently popular technologies, while positioning is the basic problem of autonomous navigation of autonomous vehicles. GPS is widely used as a relatively mature solution in the outdoor open road environment. However, GPS signals will be greatly affected in a complex environment with obstruction and electromagnetic interference, even signal loss may occur if serious, which has a great impact on the accuracy, stability and reliability of positioning. For the time being, L4 and most L3 autonomous driving modules still provide registration and positioning based on the high-precision map constructed. Based on this, this paper elaborates on the reconstruction of the experimental scene environment, using the SLAM (simultaneous localization and mapping) method to construct a highprecision point cloud map. On the constructed prior map, the 3D laser point cloud NDT matching method is used for real-time positioning, which is tested and verified on the “JAC Electric Vehicle” platform. The experimental results show that this algorithm has high positioning accuracy and its real-time performance meets the requirements, which can replace GPS signals to complete the positioning of autonomous vehicles when there is no GPS signal or the GPS signal is weak, and provide positioning accuracy meeting the requirements.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.