Issue |
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
|
|
---|---|---|
Article Number | 03036 | |
Number of page(s) | 4 | |
Section | Environmental Monitoring Repair and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202125703036 | |
Published online | 12 May 2021 |
Study on the decolourisation conditions of methylene blue by Irpex Lacteus
1
College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
2
Ginseng Science Research Institute, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
* Corresponding author: wangsm@ccucm.edu.cn
The fungus Irpex Lacteus is effective in decolourising methylene blue, a common dye in printing and dyeing wastewater, and it is of clear significance to investigate its optimal decolourisation process through liquid fermentation. The medium mixed with methylene blue dye was incubated with Irpex Lacteus in a constant temperature shaking flask liquid fermentation equipment, and single factors such as incubation time, temperature, shaking bed speed, dye concentration, pH, carbon and nitrogen sources were screened, and key factors were targeted orthogonal tests were carried out to optimise the best decolourisation process for Irpex Lacteus against methylene blue. The single-factor test revealed that carbon, nitrogen, pH and inoculum were the main factors influencing the decolourisation of methylene blue by Irpex Lacteus. The results of the orthogonal test showed that the decolourisation effect was best when the carbon source was sucrose, the nitrogen source was peptone, pH=3.5, the inoculum level was 7% and the incubation time was 10 days. Irpex Lacteus showed good decolourisation effect on methylene blue and the optimised process conditions provided a new direction for the treatment of printing and dyeing wastewater.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.