Issue |
E3S Web Conf.
Volume 260, 2021
2021 International Conference on Advanced Energy, Power and Electrical Engineering (AEPEE2021)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
Section | Advanced Energy and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202126001002 | |
Published online | 19 May 2021 |
Screening refrigerant for a new enhanced ejector heat exchanger used in district heating system based on industrial waste heat
Beijing Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, 100044 Beijing, China
* Corresponding author: sunfangtian@bucea.edu.cn
Performance of the new enhanced ejector heat exchanger is the key to improving performance of the district heating system based on industrial waste heat, and it is significantly affected by thermo-physical property of refrigerant. In this paper, characteristics of the new enhanced ejector heat exchanger are considered, and a new principle for screening refrigerant is proposed. Eleven kinds of refrigerants are firstly selected as candidates, and then they are evaluated from the perspective of property and thermodynamic performance of the new enhanced ejector heat exchanger. The results show that refrigerant property has a greater influence on thermodynamic performance of the new enhanced ejector heat exchanger. Under the condition of low temperature space heating, R152a and R1234yf are favorable choices for the new enhanced ejector heat exchanger. While under conditions of other temperature space heating, R245fa and R600 are better choices for the new enhanced ejector heat exchanger.
Key words: Screening refrigerant / Enhanced ejector heat exchanger / Heat-driven ejector refrigeration / heat transfer effectiveness / product exergy efficiency
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.