Issue |
E3S Web Conf.
Volume 260, 2021
2021 International Conference on Advanced Energy, Power and Electrical Engineering (AEPEE2021)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 7 | |
Section | Power Electronics Technology and Application | |
DOI | https://doi.org/10.1051/e3sconf/202126002010 | |
Published online | 19 May 2021 |
Research on terrain aerodynamics analysis of power grid structure at different temperature
1 State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha, China
2 State Key Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha, China
* Corresponding author: yuree2008@126.com
The distribution of near-surface meteorological elements will be greatly affected by topography and other factors, such as wind, which making the dynamic structure of the micro-topography area passed by the power transmission and transformation equipment more susceptible to micro-topography climate. The single hill is one of the typical topography in the micro-topography. This paper studies the variation of buoyant flow and temperate circulation in a typical long hilly terrain. Integrating factors such as buoyancy, turbulence and micro-topography, the separation vortex simulation technology is adopted to the special conditions of microtopography climate. The effect of different surface temperatures on the wind field of the power grid is described in detail. Experiments in the thesis show that the difference in surface temperature will directly affect the speedup ratio. Compared with the change of air temperature, when the surface temperature is higher, the acceleration effect is less obvious, but when the surface temperature is lower, the acceleration effect is more obvious.
Key words: Aerodynamics / Wind field simulation / Micro terrain area / Grid structure
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.