Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 8 | |
Section | Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction | |
DOI | https://doi.org/10.1051/e3sconf/202126403011 | |
Published online | 02 June 2021 |
To the determination of non-washable speed in the channels bed consisting of disconnected soils
Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
* Corresponding author: l.samiyev@tiiame.uz
This article analyzes the factors that influence the deformation process in the channel. When assessing the deformation process in channels consisting of disconnected soils, the method for determining nonwashable speed was analyzed, taking into account the trapezoidal shape of the channel, and, based on laboratory studies, a dependence was proposed for determining the non-washable speed. The values of the proposed dependencies are compared with the calculated values of the formulas of I.I. Levi, C.E. Mirtskhulava, V.A. Velikanova, B.I. Studenichnikov and A.M. Latyshenkov and obtained positive results. The proposed dependencies for the determination of non-washable speed are improved, taking into account turbulence and the laws of velocity distribution over the stream's depth. In the experimental researches, were used sand particles with different diameters d ≤ 0.315mm; 0.315mm < d ≤ 0.63mm; 0.63mm < d ≤1.25mm 1.25mm < d ≤ 2.5mm 2.5mm < d ≤ 5.0mm. Based on the analysis of the experimental data, the coefficients are as follows: η1 = 1.41 for the bottom of the channel and η2 = 1.52 for side slopes. The reliability of the results is justified by comparing the proposed calculation method with a study of other authors. Based on the research, constructed a plot of the velocity distribution and the depth of the stream. In these diagrams, preservation of the change in velocity along the depth of the flow was observed under various modes of motion. In all experiments, a process was observed-the smallest value of the flow velocity at the bottom and the highest at a depth of (0.8–0.9) h from the water level.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.