Issue |
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 12 | |
Section | Information Telecommunication Technologies and Digital Transformation | |
DOI | https://doi.org/10.1051/e3sconf/202126609005 | |
Published online | 04 June 2021 |
Groundwater Level Prediction based on Neural Networks: A case study in Linze, Northwestern China
College of Information Science And Engineering, China University of Petroleum-Beijing, Beijing, China
Groundwater level is an important factor in evaluating groundwater resources. Due to numerous non-linear factors, establishing theoretical models is difficult.. Therefore, this paper proposesthe BP (Back Propagation) neural network and the Radial Basis Function (RBF) neural network. The study area is divided into two zones. The R2 (coefficient of determination) and RMSE (Root Mean Squared Error) are used to evaluate the performance. The BP neural network is used to predict groundwater level in the two zones with the R2of0.57 and 0.54, with the RMSE of 0.0804 meters and 0.1864 meters respectively. The RBF neural network is implemented with R2of 0.65 and 0.61, with RMSE of 0.0720 meters and 0.1519 meters, respectively. The results show the RBF neural network performs better than the BP neural network in the accuracy of predicting groundwater level. This study shows the feasibility and superiority of groundwater simulation using neural network.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.