Issue |
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
|
|
---|---|---|
Article Number | 02040 | |
Number of page(s) | 5 | |
Section | Environmental Chemistry Research and Chemical Preparation Process | |
DOI | https://doi.org/10.1051/e3sconf/202126702040 | |
Published online | 04 June 2021 |
The effect of composite reducing agent on the reduction process and the tail gas of carbon-containing pellets
1 Northeastern University, School of Metallurgy, 110819, Shenyang, China
2 Beijing Peking University Pioneer Technology Co., Ltd, 100080, Beijing, China
Corresponding author: xyding@mail.neu.edu.cn
In order to explore a reasonable way for the efficient utilization of coal resources in the ironmaking process. In this paper, lignite and bituminous coal are used as reducing agents, and two types of vanadium-titanium magnetite composite reducing agent pellets are prepared for different content ratios and mixed forms of the two coal powders. Under the simulated rotary kiln pre-reduction conditions, the influence of the ratio and mixing of pulverized coal on the metallization rate and tail gas composition of the reduction process was explored. The results show that increasing the proportion of high volatile lignite is beneficial to the reduction of pellets and can obtain pellets with a higher metallization rate. Under the new pre-reduction process conditions of the rotary kiln, the vanadium-titanium magnetite double-layer pellet with 75wt% lignite inside and 25wt% bituminous coal outside has the highest metallization rate of about 76%. At the same time, this new type of composite reducing agent pellets reduced gas emissions. This pellet is of great significance to the coal-based ironmaking process.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.