Issue |
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
|
|
---|---|---|
Article Number | 02071 | |
Number of page(s) | 5 | |
Section | Environmental Chemistry Research and Chemical Preparation Process | |
DOI | https://doi.org/10.1051/e3sconf/202126702071 | |
Published online | 04 June 2021 |
Optimization of Multi-zone Cooling System of Complex Pipe Network Based on Particle Swarm and Genetic Algorithm
Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan, 430205, China
* Corresponding author: laoxingsheng@tsinghua.org.cn
The cooling pipe network system of the power plant has the characteristics of multiple users, multiple working conditions, and complex topological structure. The division of water supply to the pipe network can simplify the topological structure of the pipe network, facilitate flow regulation, and adapt to the requirements of multiple working conditions. District water supply can be divided into districts according to flow, pressure and structure. The user allocation of pipe network water supply system is a typical combined optimization problem. When the system is relatively complex and the number of users is huge, conventional enumeration methods, dynamic programming and other methods are often unable to solve such problems. The combined algorithm of particle swarm algorithm and genetic algorithm can obtain approximate solutions to such problems. By using a combination of particle swarm algorithm and genetic algorithm to analyze and determine the distribution of pipe network user traffic, it is possible to avoid the waste of energy in the distribution of pipe network users based on experience. The combined algorithm proposed in this paper has high stability, can change the number of partitions to adjust user allocation according to actual needs, and has strong versatility. For the case described in this article, when the number of partitions is 2, compared to the cases where the number of partitions is 3 and 4, the flow rate and pressure drop of each partition are not much different, which can better meet the reliability and maintainability requirements
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.