Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 4 | |
Section | Energy Development and Utilization and Energy Storage Technology Application | |
DOI | https://doi.org/10.1051/e3sconf/202127101005 | |
Published online | 15 June 2021 |
Geometric nonlinear dynamic response of wind turbines with different power performance
1 Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
2 Jingyuan Urban Construction Investment Company Limited, Baiyin, Gansu, 730600, China
* Corresponding author: tgwang@nuaa.edu.cn
As the size of wind turbine blades increases, the influence of geometric nonlinearity on aerodynamic, structural and design of blades becomes more and more serious. In this work, the efficient aero-elastic calculation of large flexible blades is studied. In order to solve the problem of efficient aeroelastic caculation of large flexible blades, this work applied the geometrically exact beam theory based on Legendre spectral finite element and coupled with the blade element momentum theory to establish the aero-elastic analysis model of large flexible blades. This model can efficiently calculate the deformation and load on the blade under aerodynamic loading and fully consider the influence of geometric nonlinearity caused by deformation on aeroelastic ability. Taking NREL 5MW and IEA 15MW wind turbines as examples, the linear and nonlinear dynamic responses of these two wind turbine blades are calculated. The result shows that the neglect of nonlinear effect will bring error. From 5MW wind turbine to 15MW wind turbine, the numerical error increased by 27.88%. The influence of geometric nonlinearity of blades on dynamic responses is analysed, which is of great significance to improve the design level of large-scale wind turbines.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.