Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 5 | |
Section | Energy Development and Utilization and Energy Storage Technology Application | |
DOI | https://doi.org/10.1051/e3sconf/202127101013 | |
Published online | 15 June 2021 |
Hydrodynamic Analysis of 3-SPS Wave Energy Conversion Device
1 College of Ocean Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, Fujian Province, China
2 Fujian Province Key Laboratory of Ocean Renewable Energy Equipment, Xiamen, Fujian, 361021, China
3 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, Shaanxi Province, China
* Corresponding author: 201761000009@jmu.edu.cn
Wave energy has the advantages of high energy density, renewability, and wide distribution, and has been highly valued by many coastal countries. The wave energy conversion device can convert wave energy into electric energy, which is of great significance for alleviating problems such as energy crisis and greenhouse effect. The traditional wave energy conversion device can only gain the energy along the heave direction, and the kinetic energy of the buoy is not fully utilized. To improve the energy utilization efficiency of the wave energy conversion device, this paper proposed a new type of 3-SPS wave energy conversion device. Based on linear waves and Lagrangian equation, a hydrodynamic model of the device was established. The displacement and velocity of the device float under the action of linear waves were analyzed. The results show that the 3-SPS wave energy conversion device can collect the kinetic energy of the buoy in its heaving, surging and pitching movement at the same time; the kinetic energy of the buoy in the heaving direction is much greater than the kinetic energy in the surging and pitching directions; the buoy can capture kinetic energy in multiple directions of motion, indicating that the 3-SPS wave energy conversion device has a high energy utilization efficiency. This paper provides some useful references for the optimal design of the new wave energy device.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.