Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03040 | |
Number of page(s) | 5 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103040 | |
Published online | 15 June 2021 |
Effects of intraocular pressure and aspheric transition zone ablation profile on corneal biomechanics after conventional refractive surgery
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hang kong University, Nanchang, 330063, china
* Corresponding author: Fanglh71@126.com
Our Purpose is to study the effects of intraocular pressure (IOP) and aspheric transition zone (ATZ) on corneal biomechanics after pure hyperopia correction by using the finite element analysis (FEA). The values of IOP were changed, and 1-5# aspheric transition zones were designed in 1-5D hyperopia correction model. Simulate and calculate the wavefront aberration, stress and vertex displacement of cornea. The results show that with the increase of IOP and diopter, defocus increases positively and sphere increases negatively. Diopter and IOP have slight influence on coma. At 22mmHg, the maximum value of defocus was 1.367mm at 5D-1#, and the maximum value of sphere was -0.32mm at 5D-5#. IOP and diopter have great influence on the stress in the marginal region of the anterior corneal surface, and 1D-1 # has the maximum value at 22mmHg. With the increase of IOP and diopter, the vertex displacement of posterior corneal surface increased. The ATZ ablation profile has little effects on the wavefront aberration and displacement. We can draw a conclusion that refractive surgery destroys the physiological structure of cornea and has a great influence on the biomechanical properties of cornea. IOP plays an important role in maintaining the physiological structure of cornea.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.