Issue |
E3S Web Conf.
Volume 272, 2021
2021 International Conference on Environmental Pollution and Governance (ICEPG 2021)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 8 | |
Section | Environmental Pollution and Pollution Monitoring and Control Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127201019 | |
Published online | 14 June 2021 |
Dynamic Characteristics Analysis and Experimental Verification of Long Span Suspension Bridge
1
School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
2
State Key Laboratory of Bridge Engineering Structural Dynamic, China Merchants Chongqing Communications Technology Research & Design Institution CO., Ltd., Chongqing, 400067, China
3
Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, 430070, China
* Corresponding author: yanggj403@163.com
The dynamic characteristics of long-span suspension bridges are complex. The natural vibration frequency is changed with different structural parameters, and the sensitivity to different parameters is different. In order to solve this problem, the spatial model of a long-span suspension bridge was established by using finite element software, and the first 20 natural vibration periods, natural vibration frequencies and vibration modes were analyzed and calculated. The accuracy of the obtained natural vibration frequency data was verified through field tests. Finally, based on the model, the stiffness of structural components is studied by one -factor-at-one-time, and the influence of various variables on the frequency and mode of a certain mode is studied by one-factor-at-one-time method. The results show that different structural parameters have different effects on the vibration frequency. When the stiffness of stiffening girder and main tower is changed, with the increase of stiffness, the variation of frequency mostly presents an upward trend, and the range is large. With the change of the secondary dead load, most of the frequencies decrease first and then tend to be stable. It can be seen from the field test results that the vibration shapes and frequencies measured by numerical simulation and test are close to each other, which can meet the requirements of engineering precision. The stiffness of the main cable and the main tower has a great influence on the modes and periods corresponding to them. The increase of the secondary dead load can reduce the natural vibration frequency of the suspension bridge, but it is not unlimited to increase the secondary dead load to reduce the frequency. The stiffness of the stiffening girder has a great influence on the frequency of the suspension bridge. When the bending stiffness of the stiffening girder increases to 3 times of the original one, the order of vibration modes of the structure will change. The research results can provide references for structural design and dynamic parameter adjustment of long-span suspension bridge.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.