Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 8 | |
Section | Building Materials and Products | |
DOI | https://doi.org/10.1051/e3sconf/202127404011 | |
Published online | 18 June 2021 |
The influence of calcined mixture cooling method on hydration products composition of blended cement stone
1 LLC «Engineering Center of High-Rise Special Technology, 420088, Kazan, Russia
2 Kazan State University of Architecture and Engineering, 420043, Zelenaya st., Kazan, Russia
* Corresponding author: lizabeta_91@list.ru
Complex additives based on combinations of calcined clays, including kaolinite with limestone, due to the synergetic effect play a major role in the creation of blended cements. Usually carbonate rocks contain clay impurities with adverse effects on the properties of the resultant cements and concretes. At the same time calcium carbonate contained in marl clays during calcination allows getting high-quality pozzolanic material. The effective complex additive based on the calcined mixture of clay and limestone was created. The aim of the study is to determine the effect of fast and slow cooling methods of the artificial mixture after calcination on the hydration products composition of blended cement stone with complex additives of calcined mixtures of clays and carbonates. Obtained results allow determining the conditions for obtaining effective complex additives based on calcined mixtures of ubiquitous clays and carbonate rocks for their application in blended Portland cement, and thus to expand the range of the latter. It is found that the preferred method is the fast cooling of the resulting mixture, which contributes to obtaining a complex additive with higher pozzolanic properties, compared with the additive obtained by the slow cooling method.
Key words: blended cement / active mineral additives / calcined mixture / limestone / polymineral clay
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.