Issue |
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 9 | |
Section | Sustainable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202128005004 | |
Published online | 30 June 2021 |
Modeling and simulating dynamics of lithium-ion batteries using block-oriented models with piecewise linear static nonlinearity
Kryvyi Rih National University, Department of Power Systems and Energy Management, 11 Vitalii Matusevysch Str., Kryvyi Rih, 50027, Ukraine
* Corresponding author: mykhailenko@knu.edu.ua
The article deals with the research of the efficiency of modelling the dynamics of voltage change in lithium-ion rechargeable batteries in charging/discharging modes using nonlinear block-oriented systems. Drawing on experimental data, a structural and parametric identification of the Hammerstein, Wiener and Hammerstein-Wiener models with a polynomial structure of the linear dynamic block and piecewise linear static nonlinearities was performed. It has been established that the best modelling accuracy was ensured by using the Hammerstein-Wiener system with a linear model having the 6th order of the numerator and denominator polynomials and an input delay of 3 samples. It showed 15.67% and 6.2% higher accuracy compared to the Wiener and Hammerstein systems, respectively. The application of those models in battery management systems will make it possible to improve the control quality for battery assemblies of solar and wind power plants in the context of the variable nature of the charging/discharging processes due to the variability of weather conditions and fluctuations in power consumption during a 24-hour period. This will ensure a wider introduction of renewable power generation into existing power systems, which is currently the leading way to ensure sustainable development of the energy sector.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.